
Unsupervised Optical Flow Estimation with Temporal Smoothing

Akshay Sharma
akshaysh@andrew.cmu.edu

Muhammad Suhail
msaleem2@andrew.cmu.edu

Zeeshan Ahmed
zeeshana@cmu.edu

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

Optical flow estimation has been tackled with deep con-
volutional neural networks (CNNs) in recent years. We uti-
lize FlowNetC[3] architecture in an unsupervised frame-
work and introduce temporal smoothing using three consec-
utive frames. Incorporating temporal smoothing leads to a
reduction of MSE loss between the original images and ones
predicted using the optical flow produced by the CNN. Mo-
tivation behind unsupervised learning stems from the lack
of labeled ground truth data of optical flow and the issues
that arise from domain mismatched between synthetic and
real-world data.

1. Introduction
Optical flow is the two-dimensional motion field of

two consecutive images. It can be represented as a two-
dimensional vector field on the image plane.[13] Generally,
it is solved by minimizing the brightness or color difference
between corresponding pixels summed over the image. It
is an under-constrained problem that has two classical so-
lutions: patch-based, which performs summation locally
over overlapping regions, and by regularizing by adding a
smoothness term on one of the flow dimensions.[12]

Convolutional neural networks have achieve tremendous
success in classifying images. The challenge with using
CNNs for optical flow arises from the needs to correlate two
sequential images, pixel-by-pixel. Fischer et al. [3] intro-
duced a CNN which includes a correlation layer for match-
ing features. However, it was found that the correlation did
not add significant accuracy.

Abundance of video data makes optical flow estimation
a powerful tool in various applications. Object tracking in
autonomous driving, video semantic understanding, and ob-
ject segmentation from video can benefit all from improve-
ment in optical flow estimation. The biggest challenge re-

mains the lack of pixel-by-pixel labeling of ground truth
optical flow. This leads to challenges in training CNNs.

Figure 1. An example of optical flow [1]

Meister et al. [10] work on unsupervised CNN used bidi-
rectional flow estimation and a robust census transform.
Image pairs were passed twice, with the order swapped.
They utilized FlowNet achitecture from Fischer et al. [3]
and achieved competitive accuracy to supervised training
methods.

Beyond the classical assumptions of brightness consis-
tency and smoothness, we introduce temporal consistency.

1



Given a sequence of consecutive images, it can be assumed
that the real world motion (or optical flow in x and y direc-
tion), can not undergo significant change over consecutive
time steps. That is to say, objects in the real world, or mo-
tion of a camera, can not undergo unreasonable changes in
acceleration. As an example, if a still camera was observ-
ing a cyclist at 5 meters per second in one frame, the optical
flow between frame 1 and 2 can not be significantly differ-
ent around the cyclist than the optical flow between frame 2
and 3, since the acceleration can only change by a reason-
able amount.

This idea of temporal consistency or temporal smoothing
is implemented in our work. The unsupervised framework
is achieved by creating image prediction by warping opti-
cal flow with the first image and comparing to the second,
original image. The CNN used is the correlation version of
FlowNet. Instead of using the conventional method of us-
ing image pairs, we used three consecutive images. Optical
flow maps are generated between the first and second im-
ages and also the second and third images. Warping the first
optical flow with itself produces a prediction of the second
optical flow with identical flow vectors. This is a method
to incorporate the temporal consistency in the loss function,
described in detail in the methodology section.

2. Related Work
One of the primary methods of optical flow estima-

tion that is used in standard computer vision libraries like
OpenCV[1] is Lucas-Kanade[8]. Belonging to the class of
differential methods, it uses Taylor series approximation for
estimation. Apart from the approximation, the algorithm
also assumes that the flow is constant between neighboring
pixels. Although the technique produces good results, these
assumptions limit the accuracy of the estimation. This was
the primary motivation for using a deep learning based ap-
proach for optical flow estimation.

One of the more prominent works amongst the deep
learning based approach is FlowNet (Learning Optical Flow
with Convolutional Networks)[3]. In this work Dosovit-
skiy et al. develop two different techniques FlowNetSim-
ple and FlowNetCorr. They generate consecutive frames
(Flying chair dataset) and passed it through a Convolutional
Neural Network to predict the flow. Since the frames are
synthetically generated, ground truth of optical flow was
available. FlowNet 2.0[6] a paper succeeding FlowNet,
discusses FLowNetS and FlowNetC in combination and
traines individually on synthetic datasets in a specific order
so as to improve the accuracy. SpyNet(Optical Flow Esti-
mation using a Spatial Pyramid Network)[11] discusses the
estimation of combining several individually trained net-
works as a spatial pyramid network. Here the flow is es-
timated at the highest level of the pyramid using low reso-
lution images. The computed residual flow is passed onto

the lower levels until we obtain the flow at the highest res-
olution. The major drawback of these approaches was the
fact that they had used synthetic data which would signif-
icantly impact the accuracy of their model when tested on
real world data. Furthermore, trying to combine several in-
dividual networks and training them independently on dif-
ferent datasets [9] in different orders induces several param-
eters which require tuning, hence is extremely cumbersome.

An approach which overcomes the above mentioned
drawbacks is UnFlow (Unsupervised Learning of Optical
Flow with a Bidirectional Census Loss) [10]. This is an
unsupervised learning approach which trains by predicting
the optical flow between frames and warping the first frame
with the predicted flow to predict the second frame, which
is then compared with the original second frame using some
very interesting criteria. Further, they even make the model
occlusion aware by using bi-directional estimation. Our
work has been inspired from UnFlow and is an attempt to
improve the performance of this approach using temporal
smoothing, which will be explained in detail in the follow-
ing sections.

Several other techniques like using a Soft Mask
module[14] in the final layer of optical flow estimation have
been proposed. However these use FlowNet as the base net-
work and propose changes in the final layer of the network.
We are proposing a technique which would overcome the
drawbacks of FlowNet itself, and hence usage of such tech-
niques on our network is bound to produce better results.

3. Key Idea
The key idea behind our work is that the optical flow be-

tween two time steps does not differ significantly. Hence,
our aim is to achieve better optical flow estimation by
smoothing the optical flow across consequent time steps.
As proof of concept, we smooth the optical flow across three
consecutive frames which we provide as input to our model.
Losses and optimization is described in the methodology
section.

4. Data
One of the major reasons we adopted an unsupervised

learning technique is due to the lack of labelled real world
data. The supervised algorithms in the field of optical flow
estimation tend to make use of synthetic data, which is not
an accurate representation of the real world and hence could
lead to a reduction in accuracy.

For training our model we made use of the MCL-V
database[7]. Three sequential images were generated from
full HD (1920 x 1080) videos from the database. These
images were converted from RGB format to YCbCr color
space and only the Y channel was used for training. The Y
channel captures all the required features and training only

2



on that channel improves the training speed considerably
without any loss in accuracy. Finally, we normalized the
pixel intensities of the images to the range [-1,1].

To evaluate our model, we used the videos from the
KITTI dataset[4]. Similar to training data, we generated tu-
ples of three sequential images, converted to YCbCr format,
normalized the Y channel and input to the model.

5. Methodology

The input to our network is a tuple consisting of the Y
channels of three consecutive frames I1, I2 , I3. The out-
put is a set of two optical flows, one from the first frame to
the second frame and another from the second frame to the
third frame. The three consecutive frames are processed two
at a time, (I1, I2) and (I2, I3) to generate their respective
optical flow maps using FlownetC[3] architecture. How-
ever, instead of comparing the generated flow maps directly
with ground truth optical flow, we adopt an unsupervised
approach, taking inspiration from [10], and warped the first
image of each set to generate the second image. So we get
OF1, OF2 as the flow maps, and we generate,

I2,pred =W (I1, OF1)

and

I3,pred =WI2, OF2)

where W is the warp function which returns a warped ver-
sion of the input images using the optical flow map. Now
with these warped images and the flow maps, we calculate
the following losses:

• MSE loss between the original images and warped im-
ages

• Spatial loss for individual flow maps to ensure spatial
smoothing[5],[10]

• Temporal loss between the two flow maps for two con-
secutive sets of frames to ensure temporal smoothing

5.1. Architecture

The basic skeleton of the architecture to generate the op-
tical flow maps comes from FlownetC[3].

Figure 2. FlownetC[3] architecture

Instead of the shown 3 channel inputs in Figure 2, we
just provide a single Y channel as input. Now the overall
architecture works on the images as shown below.

Figure 3. Full Architecture

5.2. Losses

As shown in Figure 3, we get two image predictions
and two optical flow maps for every input of three images.
Training the network uses three different losses as men-
tioned below.

5.2.1 MSE loss

FlownetC[3] by itself is an supervised framework but due to
the lack of ground truth data for optical flows, we pivoted to
unsupervised learning. In our framework, we warp the pre-
dicted optical flow between two images with the first image
and generate an estimate of the second images. Then we use
the second image which was a part of the input to calculate
MSE loss between the estimated image and the original im-
age. We calculate this loss for both the estimated second im-
age and the estimated third image in our input. It has to be
kept in mind that FlowNetC estimates optical flows in five
different sizes which are bi-linearly up-sampled to the im-
age size and are compared with the original flow. Similarly,
we are using these five flows to predict five images which
are then compared with the original image and a weighted
sum of the losses are considered.

3



MSE loss between the original images and the predicted
images:

loss1 =MSE(I2, I2,pred) +MSE(I3, I3,pred) (1)

5.2.2 Spatial loss

To ensure spatial smoothness[5] of the optical flow map
generated by the network, we calculate a spatial loss over
the generated optical flow which ensures that the flow value
for each pixel is not very different from the flow values of its
neighbouring pixels. We calculate the spatial loss using the
same strategy as [10] which involves convolving the optical
flow maps with fixed filters which give a measure of differ-
ence of the flow for a pixel with the nearby pixels. We use
two separate filters, the first one calculates the difference
with the horizontal and vertical pixels, whereas the second
filter calculates the difference with the diagonal pixels.

F1 =

 0 −1 0
−1 4 −1
0 −1 0

 (2a)

F2 =

−1 0 −1
0 4 0
−1 0 −1

 (2b)

We calculate the smoothing loss using the Charbonnier
loss function C(x) as used by[10]. It is defined as below:

C(x) = (x2 + ε2)γ (2c)

where ε is a small number in the range (0, 1), and γ is an
exponent which is usually kept at 0.45.

loss2 =
∑
x

C

[
OF12[N(x)] ∗ F1 +OF12[N(x)] ∗ F2

]

+
∑
x

C

[
OF23[N(x)] ∗ F1 +OF23[N(x)] ∗ F2

]
(2d)

whereN(x) defines the neighbourhood of the pixel location
x.

5.2.3 Temporal loss

The idea of spatial loss states that for any given small patch
in an image for any pixel can not have a very different opti-
cal flow than its neighbours because images of real objects
are rigid and thus there should be a constraint on their op-
tical flow values. If we extend this idea in the time domain
we can come up with a concept of temporal smoothing. If
we consider the same object being filmed at two consecu-
tive time steps, the flow values of the pixels representing

that object can not change by significantly because real ob-
jects have a finite acceleration, and if the time steps at which
the images were taken are very close than they are bound to
have a very small change in their velocities. Thus, their op-
tical flow values at two consecutive time steps should be
similar.

But there is a problem in directly applying a constraint
on the optical flow maps of consecutive time steps. We can
not simply subtract the optical flow maps. This is because
the pixel locations of objects in motion change between I1
and I2, described by the velocity or the optical flow value
of pixel in I1. If a particular object has a pixel location of x
in OF12, the same pixel location in OF23 will not give you
the values of flow for that object. The object now occupies
a different pixel location, given by: x+OF12(x).

To compare the flow values of the same object in the
two optical flow maps, we need to the locate the correct
pixels in both the flow maps which refer to the same object.
This can be done by warping the first flow map with itself.
The resultant warped flow will map the flow values from the
frame of reference of I1 to that of I2.

OF12,warped =W (OF12, OF12) (3)

Now we can directly take a difference of this warped flow
OF12,warped, andOF23 to calculate the variation in the flow
values of the same object at two different time steps. Sim-
ilar to calculating the spatial loss, we use the Charbonnier
loss function on the above mentioned difference to get an
estimate of the temporal loss.

loss3 =
∑
x

C

(
OF12,warped(x)−OF23(x)

)
(4)

Finally we add all the three losses to get the total loss of
our network.

Total loss = loss1 + loss2 + loss3 (5)

5.2.4 Implementation

We have written the entire code from scratch in
torch[2] which can be found at the following link:
https://github.com/akshay-sharma1995/unflow.

6. Testing
As mentioned before, for training the model we used

frames from the MCL-V dataset and defined spatial smooth-
ing, temporal smoothing, and reconstruction loss as opti-
mization criteria. However, for testing we made use of
KITTI dataset. We generated triplets of image frames from
the video, which we passed to our model. The output from
the model consisted of optical flows from frame 1 to 2 and
frame 2 to 3. These optical flows were used to warp image

4

https://github.com/akshay-sharma1995/unflow


1 to predicted image 2, and image 2 to predicted image 3
respectively. These predicted images were then compared
with the actual images 2 and 3, using reconstruction loss as
the criterion.

As a comparative analysis of our method, we imple-
mented another network which worked exactly similar to
ours, except that it did not consider temporal smoothing as
a criterion for training. This way we will be able to accu-
rately estimate the effect of temporal smoothing on optical
flows.

Figure 4. Predicted images found by warping the predicted flow
with the previous frames. (Clear distortion could be seen around
the shadow on the wall just after the cyclist, and at the pole for the
image predicted by two frame method)

Figure 5. Predicted optical flow for the above frame. (Indicating
how there’s minimal flow towards the center of the frame as com-
pared to the corners)

Our evaluation shows that the performance of optical
flow estimation significantly improved by using temporal
smoothing as an optimization criterion. Figure 4 clearly
shows that the image predicted when not use temporal
smoothing contains significant distortion. On the other
hand, our method using temporal smoothing shows the pole
and shadow to be significantly straighter, matching the orig-
inal image.

During testing, a consistent reduction in loss was ob-
served when using temporal loss. The results of the nor-

Method Mean Loss
Without Temporal Loss 26487.839
With Temporal Loss 22669.432

Table 1. Comparison of Mean reconstruction loss

malized loss for some of the testing frames for both the net-
works have been shown in Figure 6.

Figure 6. Comparison of reconstruction loss for the warped image
using the predicted optical flows

Overall, it can be confirmed that not considering tempo-
ral loss has resulted in an increase of the mean reconstruc-
tion loss by 16.84%, which is a significant increase. It is
to be noted that these losses are a weighted combination of
several of the losses that we have mentioned in the method-
ology section and the large nature of these numbers do not
mean that the estimations are poor.

Figure 7. Optical flow map for a video where the mouse moves
from left to right. (Clearly shown by the dark patch in the map)

5



7. Conclusion

The results show significant improvement in optical flow
estimation using temporal smoothing. When comparing the
exact same sequences of images in the same CNN architec-
ture, incorporating temporal smoothing reduced mean re-
construction loss by 16.84%. When numerous sequential
frames are available from videos, we strongly recommend
the usage of temporal smoothing to better estimate the opti-
cal flow.

8. Future Work

Given the positive results of using temporal smoothing,
it is important that we investigate the impact of smoothing
the flow over more than three consecutive frames. In addi-
tion, we are considering using two frames as input and gen-
erating a middle frame using CNN and then incorporating
that in the process of predicting optical flow by smoothing
the flow over these three images. This method will enable
a representative comparison to other networks which only
use two images as input.

9. Contributions and Acknowledgements

We thank Advanced Agents - Robotics Technology Lab
at Carnegie Mellon University for allowing us to train the
CNN and run experiments on their GPU enabled server. We
thank Krishna Toshniwal for guidance during this project.
And finally we thank Dr. Amir Barati Farimani for teaching
Machine Learning and Artificial Intelligence for Engineers
and encouraging us to pursue a challenging project. All au-
thors contributed equally to this work.

References

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[2] R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A matlab-like environment for machine learn-
ing. In BigLearn, NIPS Workshop, 2011.

[3] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick
Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2758–2766,
2015.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[5] Berthold KP Horn and Brian G Schunck. Determining
optical flow. Artificial intelligence, 17(1-3):185–203,
1981.

[6] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Mar-
gret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with
deep networks. 12 2016.

[7] Joe Yuchieh Lin, Rui Song, Chi-Hao Wu, TsungJung
Liu, Haiqiang Wang, and C-C Jay Kuo. Mcl-v: A
streaming video quality assessment database. Journal
of Visual Communication and Image Representation,
30:1–9, 2015.

[8] Bruce D Lucas, Takeo Kanade, et al. An iterative im-
age registration technique with an application to stereo
vision. 1981.

[9] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train
convolutional networks for disparity, optical flow, and
scene flow estimation. In IEEE International Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016. arXiv:1512.02134.

[10] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow:
Unsupervised learning of optical flow with a bidirec-
tional census loss. arXiv preprint arXiv:1711.07837,
2017.

[11] Anurag Ranjan and Michael J Black. Optical flow es-
timation using a spatial pyramid network. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 2, page 2. IEEE, 2017.

[12] Richard Szeliski. Computer vision: algorithms and
applications. Springer Science & Business Media,
2010.

[13] Andreas Wedel and Daniel Cremers. Stereo scene flow
for 3D motion analysis. Springer Science & Business
Media, 2011.

[14] Xi Zhang, Di Ma, Xu Ouyang, Shanshan Jiang, Lin
Gan, and Gady Agam. Layered optical flow estimation
using a deep neural network with a soft mask. arXiv
preprint arXiv:1805.03596, 2018.

6


	. Introduction
	. Related Work
	. Key Idea
	. Data
	. Methodology
	. Architecture
	. Losses
	MSE loss
	Spatial loss
	Temporal loss
	Implementation


	. Testing
	. Conclusion
	. Future Work
	. Contributions and Acknowledgements

