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Abstract

Optical flow is an important concept that plays a central role in various computer
vision tasks like object tracking and image segmentation. With the recent ad-
vancements in deep learning, especially convolutional neural networks (CNNs),
there has been a surge of learning based flow estimation methods in an attempt to
overcome the limitations of the classical approaches. Most of these learning-based
methods use an autoencoder based architecture to generate optical flow from a
given set of images. But to the best of our knowledge there has been no attempt at
trying to tackle this task using more complex models like Variational Autoencoders
(VAE) and Generative Adverserial Networks (GANs). Given the exceptional and
robust performance the two deep learning models have delivered in recent years,
especially on computer vision tasks, we have made an attempt to estimate optical
flow using them. In this report we talk about our implementation of the models,
analysis of their performance on the task and a discussion of the various challenges
we faced while training them.

1 Introduction

Optical flow is defined as the apparent motion of individual pixels in the image plane and can be
represented as a two-dimensional vector-field. This is an important and interesting problem as the
estimation of optical flow is used in a number of areas including object tracking, autonomous driving,
object segmentation, and video semantic understanding.

The problem of computing optical flow given two consecutive frames, in its classical formulation was
tackled by making several assumptions about the flow and the frames. Some of the more common
assumptions that have been used in the past literature include brightness constancy of the frames (i.e.
the values of the pixels gradually changes between pixels and there are no significant jumps) and
spatial smoothness of the flow (i.e. the value of the flow gradually changes between pixels and there
are no significant jumps). These assumptions are only coarse approximations to reality and they limit
the performance.

Recent approaches have tried to start over, by focussing more on the use of neural network based
methods. While the initial focus was on supervised architectures, the lack of real-world ground truth
data has forced people to develop unsupervised and self-supervised techniques. In our previous
approach to the problem, as part of the project for the Introduction to Machine Learning for Engineers
in the Fall of 2018, we had developed a self-supervised convolutional neural network framework,



while accounting for temporal flow smoothing (i.e. the value of the flow of a pixel gradually changes
between frames and there are no significant jumps). So instead of estimating optical flow between 2
consecutive frames, we used 3 consecutive frames to estimate 2 optical flows (one between frame 1
and frame 2, the other between frame 2 and frame 3). This way the estimation of both the optical
flows make use of the information from all 3 frames.

In this project, we approach the problem of optical flow estimation between 2 frames, through
the use of more complex models like Generative Adversarial Networks (GANs) and Variational
AutoEncoders (VAEs). The reason for the shift being twofold:

• Both GANs and VAEs can give us robustness over noisy input (especially in terms of motion
intensity)

• In the previous techniques we had to manually define loss functions for training the network.
Most of these loss functions are based on the classical assumptions mentioned earlier (spatial
smoothing and brightness constancy). This could cause the network to not capture some
important features that could aid in the accuracy of the estimation process. By using GANs,
we let the generator learn the features not from the loss functions based on these assumptions
but instead through a discriminator. This allows the generator to learn a wide array of
features not curbed by the assumptions.

2 Related Work

One of the primary methods of optical flow estimation that is currently being used in standard
computer vision libraries like OpenCV[1] is Lucas-Kanade[8]. Belonging to the class of differential
methods, it uses Taylor series approximation for estimation. Apart from the approximations, as
mentioned earlier, belonging to the set of classical algorithms, it also assumes that the flow is constant
between neighboring pixels. Although the technique produces good results, these assumptions limit
the accuracy of the estimation. This was the primary motivation for using a deep learning based
approach for optical flow estimation.

One of the more prominent works amongst the deep learning based approaches is FlowNet [2]. In
this work they feed in a pair of consecutive frames from a synthetically generated dataset as input to
a convolutional neural network and predict the optical flow between the frames. Since the frames
are synthetically generated, ground truth optical flow was readily available and hence the model was
directly trained by comparing the prediction with the ground truth.

FlowNet 2.0 [6] a paper succeeding FlowNet, discusses about combining two algorithms FLowNetS
and FlowNetC together, while training them individually on synthetic datasets (in a specific order) so
as to improve the accuracy. SpyNet(Optical Flow Estimation using a Spatial Pyramid Network)[12]
discusses combining several individually trained networks as a spatial pyramid network. Here the
flow is estimated at the highest level of the pyramid using low resolution images. The computed
residual flow is passed onto the lower levels until we obtain the flow at the highest resolution. The
major drawback of these approaches was the fact that they had used synthetic data which would
significantly impact the accuracy of their model when tested on real world data. Furthermore, trying
to combine several individual networks and training them independently on different datasets in
different orders induces several parameters which requires extensive hyperparameter tuning.

An approach which overcomes the above mentioned drawbacks is UnFlow [10]. This is an unsuper-
vised learning approach which predicts the optical flow when fed in two consecutive frames. This
optical flow is then used to warp the first frame to obtain the predicted second frame. The model is
then trained by comparing the predicted second frame with the ground truth second frame. This way,
the training process is unsupervised and has eliminated the need for ground truth flows.

We have drawn inspiration from the above works in our attempt to predict optical flows using complex
models.

3 Proposed Method

In this section we will discuss the details of our approach, the architectures of our proposed models
(VAE and GAN) and the loss functions used for training them. To understand and compare the
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performance of our approach, we implemented two autoencoder based baselines. The first is a
supervised autoencoder and the second is an unsupervised autoencoder. Details about each of these
approaches can be found in the subsections below.

3.1 Supervised Autoencoder

FlownetC [3], one of the more prominent works in the field was chosen as the supervised autoencoder
baseline. This is a supervised model that extracts optical flow at different scales, thereby learning
strong multi-scale features.

Figure 1: Supervised AutoEncoder Architecture

For every pair of consecutive frames, the optical flow at every scale is upscaled to the ground truth
optical flow’s size (Fig. 1), and the L2 loss between the Flowpred and the Flowtrue is used to train
the network.

LAE = ||Flowpred − Flowtrue||2 (1)

3.2 Unsupervised Autoencoder

The unsupervised autoencoder that we used was inspired by the work of Meister et. al. [10]. Since
the goal of this approach is to alleviate the problem of the requirement of ground truth flows to train
the model, instead of comparing the flows, the predicted flow is warped with the first image to obtain
a predicted second frame. This predicted second frame is compared with the ground truth second
frame (which was part of the input) to train the model as shown in Fig. 2.

Figure 2: Unsupervised AutoEncoder Architecture
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In an unsupervised setup it is common to add spatial smoothing loss over the Flowpred map. This
stems from the classical assumption, that the optical flow of a small neighborhood of pixels should
be the same. Classical setups like [9] apply it as a hard constraint enforcing this property to hold for
all pixel neighborhood, whereas the current deep learning based methods like [10] use it as a penalty
function which is added to the loss function.

LUAE = ||Predicted Fame 2− Frame 2||2 + LSpatial smoothing (2)

We calculate the smoothing loss using the Charbonnier loss function C(x) as described in [10].

C(x) = (x2 + ε2)γ (3)

where ε is a small number in the range (0, 1), and γ is an exponent which is usually kept at 0.45.

LSpatial smoothing =
∑
x

C

[
Flowpred[N(x)] ∗ F1 + Flowpred[N(x)] ∗ F2

]
(4)

(5)

where N(x) defines the neighbourhood of the pixel location x, F1 and F2 are the Sobel filters[13]
for x and y image derivatives respectively, and ∗ is the convolution operator.

3.3 Unsupervised VAE

The major difference between an ordinary autoencoder and a variational autoencoder is that a VAE
encodes the input data in a regularised probability space defined by a standard normal distribution,
N (0, I) (Fig 3). This allows for more robust encoding of the inputs, and can thus lead to potentially
better performance on test data. As explained in the unsupervised autoencoder method, the FlownetC
[2] model extracts features at different scale to generate optical flow, we in particular modified the
last encoded feature vector and embedded it into the probability distribution required for a VAE.

Figure 3: Unsupervised Variational AutoEncoder Architecture

The technique used to train the VAE is similar to the training process of the unsupervised Autoencoder,
except that in this case we use an additional KL divergence loss term that is used to regularise the
target encoding distribution.

LVAE = KLD + ||Predicted Frame 2− Frame 2||2 + LSpatial smoothing (6)
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Figure 4: GAN Architecture

3.4 GAN

The final approach that we had implemented was a GAN[5] based architecture. We took inspiration
from [14], which uses an input conditioned generator to perform semantic in-painting of a given
image. Our architecture builds up on the previous unsupervised VAE based approach and instead of
using a predefined loss functions based on the classical assumptions (like the smoothing losses), we
pass both the ground truth frame 2 and the predicted frame 2 through a discriminator. The intuition
behind this is that the discriminator will slowly learn the finer details present in the ground truth
frame 2 and thus will force the generator to generate those details through the optical flow prediction.
This way there will be no need to explicitly encode the assumptions. The framework of our proposed
model is shown in Fig 4.

Generally in a GAN architecture, to generate the output we randomly sample noise and feed that to
the generator. However, we want the prediction made by the GAN to be dependent on the input
frames and not any random optical flow. So we would like the noise (or the latent vector) to be
conditioned on the input, so that the output corresponds to the inputs. For this reason the first part of
our generator is an encoder which learns to map the input frames to a standard normal distribution
similar to a VAE. The second part would be the decoder, which generates an optical flow according
to the noise sampled from this distribution and is used to warp the Frame 1 to obtain Predicted
Frame 2. Now this Predicted Frame 2 and Frame 2 are passed on to the discriminator as fake and
real data respectively. The network is trained using a combination of traditional GAN losses[5] and
the KL divergence loss on the probability distribution, for the VAE part in the generator.

Generator Loss:

LGen = − log(Disc(Predicted Frame 2)) +KLD + LSpatial smoothing (7)
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Discriminator Loss:

LDisc = − log(Disc(Frame 2))− log(1−Disc(Predicted Frame 2)) (8)

4 Experiments

4.1 Datasets

We focused on two main datasets for this task: KITTI flow 2015 dataset [11] and the MCL-V dataset
[7]

4.1.1 KITTI Dataset

The KITTI dataset is a very popular dataset used to benchmark optical flow estimation methods. This
dataset consists of first person view from a car being driven in different urban scenarios and highways.
This makes this data a very good choice from the viewpoint of real world autonomous car scenario,
which does depend on a good optical flow estimator to get real time velocities of objects around it.

4.1.2 MCL-V Dataset

The MCL-V dataset has videos of both animated and real world scenes. Both these setting have a lot
of varieties in terms of motion directions, and intensities, which can provide a lot of robustness to
networks trained on it.

4.2 Evaluation Metric

To evaluate the performance of the models, we use what is referred to as End Point Error (EPE) as
the evaluation metric. EPE is a standard metric used to judge the quality of the Flowpred, and is
calculated as the euclidean distance between the Flowpred and the Flowtrue. The ground truth flows
for some sequences in KITTI dataset [11] are readily available, hence the EPE is computed with
respect to these flows.

EPE = ||Flowpred − Flowtrue||2 (9)

4.3 Results and Discussions

Figure 5: EPE comparision for all the methods
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We ran all the models on the training split of the KITTI[11] dataset for 300 epochs and plotted the
EPE for every 10th epoch on the testing split of the dataset. Fig 5 shows the EPE vs Epoch plot for all
the models discussed in section 3. According to the plot, the supervised model was able to achieve
the lowest EPE of all the other models, with the GAN performing the worst. This is contrary to the
hypothesis we started out with.

The Flowpred and the warped frame 2 for each model can be seen in Fig 6. As can be seen,
the supervised autoencoder and the unsupervised autoencoder return acceptable and smooth flow
predictions. However, the VAE returns an extremely noisy output resulting in a distorted second
frame. On the other hand, GAN failed to learn a useful prediction as it continued to predict flow
values closer to zero. These results do agree with the EPE plots for each model, where the supervised
autoencoder performed the best.

It has to be kept in mind that this is a research problem that requires a lot more time to analyse the
cause of the issues and develop solutions. However, in the limited time available to us, we ran a lot of
experiments to understand more about the possible reasons for the models’ failures. Some of them
are listed below:

• Reconstruction Loss: We had tested the impact of both L1 and L2 losses on the training of
the model. Neither of these resulted in favorable results.

• Network weight initialization: For both the GAN and VAE setups. We noticed that
the KLD loss was blowing up to very high values very quickly. On deeper analysis this
pointed towards the problem being the initialization of the network weights. We found that
initializing the network weights using Xavier[4] normal initialization between [−0.1, 0.1]
sets this issue right and does not lead to the blow up of the KLD loss.

• Spatial smoothing loss: For the GAN based model we were initially not considering any
smoothing loss over the optical flow, as we were working under the assumption that the
learning signals from the discriminator will help the generator learn these features without
explicitly encoding them. Since this was not the case, we had also tried explicitly encoding
the spatial smoothing through a smoothing loss function. However, this did not change the
results.

• Architectures for VAE and GAN: Before switching to the Flownet-C[3] architecture, we
had tried a custom architecture for the VAE and GAN model. This architecture did not use
the multi-scale optical flow estimation introduced by Flownet-C. We were hoping the use of
a discriminator will avoid the requirement for a multi-scale prediction. However, this was
not the case. Hence we switched to a multi-scale predictor. Even after the switch, there were
no visible improvements in the performance. The implementations of both these models can
be found in the section below .

5 Implementation

Here is a link to the 2 repositories that we had developed our code in. The first repository was
developed from scratch and contains the code for the GAN and the VAE models while the second
repo is a fork from FlowNet [2] that we added our GAN and VAE implementation to.

• Original implementation: https://github.com/akshay-sharma1995/let_it_flow.git (master
branch)

• Flownet-C based implementation: https://github.com/Muhammad441/FlowNetPytorch.git
(unsupervised model branch)

6 Conclusion and future work

In conclusion, we have made an attempt to use complex models like GANs and VAEs to predict the
optical flow between consecutive frames (although unsuccessfully). One of the major drawbacks
of using complex models like GANs, is that training them can be tricky and might require a lot of
engineering and analysis. While we have tried to analyse a fair share of the issues, the problem
warrants more time and effort which we hope to invest post-deadline.
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Figure 6: (a) Ground truth frame 1 (b) Ground truth frame 2 (c) Supervised AE predicted flow (d)
Supervised AE predicted frame 2 (e) Unsupervised AE predicted flow (f) Unsupervised AE predicted
frame 2 (g) VAE predicted flow (h) VAE predicted frame 2 (i) GAN predicted flow (j) GAN predicted
frame 2
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