
 

VISUAL QUESTION ANSWERING 
 

Akshay Sharma(14062), Bhawesh Kumar(14181), Mandeep Singh(14363), Mayank Garg (14375), 
 Nikhil Baranwal (14425) 

 
CS671A: Introduction to Natural Language Processing 

Indian Institute of Technology Kanpur 
 
 
​Abstract - The focus of our project is Visual Question           

Answering (VQA). In particular, we focus on questions with         
open ended answers. We use a Multi-Layer Perceptron (MLP)         
model with softmax classifier on the dictionary words for         
generating answers. We try various word embedding       
techniques (BoW, GLoVe, word2vec) for representing text       
questions and pre-trained CNN (VGG16) for representing       
Images. We then implement the LSTM architecture for text         
questions with GLoVe embedding for words. We also        
implement a unique multi-model approach in which we        
distribute questions in 3 different classes depending on the type          
of answer expected. Different neural-architectures are used for        
different classes of questions. Finally, we briefly review the         
emerging technique of image-question co-attention for VQA.       
We conclude with a brief discussion of our results and future           
works. MS COCO dataset is used in all models. 
   ​Index Terms— ​CNN, word2vec, GloVe, LSTM, MLP 
 

1. INTRODUCTION 
 
Visual Question Answering deals with answering text based        
questions about a given image. The question can be open          
ended type, yes/no type, MCQ type or numerical answer         
type. The VQA task requires concepts and techniques from         
Computer Vision and Natural Language Processing. Image       
features are extracted using Computer Vision techniques,       
while text features from questions and answers are extracted         
using Natural Language Processing techniques. A VQA task        
is challenging for a computer because any algorithm hoping         
to perform such a task must meaningfully combine the text          
and image features which comes from very distinct feature         
spaces[1][6]. 
 
1.1 Motivation 
 
Computers are now easily able to do tasks like object          
recognition, scene classification quite well. However, the       
ability of the computer to extract deeper semantic meaning         
from the questions remains lacking. VQA provides a real         
test for such understanding. Besides, VQA also has some         
important real world applications. Imagine a visually       
impaired person who could just click an image from his          

phone and he would be informed about his surroundings.         
VQA can also be used to perform Visual Turing Task.. 
 
1.2 Overview 
 
In the project, we implement a trained model for VQA. We           
use MS COCO (2014) dataset for training and testing[2. The          
MS COCO dataset has 82,783 images and 248,349        
questions for training and 40,504 images and 121,512        
questions for testing. 
In Section 2, we describe the basic pipeline of VQA. In           
section 3, we try a new approach involving classification of          
questions based on the type of answer expected. Section 4          
describes the experimental setup of the methods mentioned        
for this project. In section 5, we discuss our results. In the            
final section, we briefly describe scopes of improvement in         
the VQA task and future works. 
 

2. BASIC PIPELINE 
 
The basic pipeline to solve this problem is to get features           
from images and questions and then combine them and use          
them to predict the answer using a classifier (MLP). The top           
most answers from training dataset is used as different         
classes in which our answer is predicted.[5][6] 
 
2.1 Image features 
 
Mainly the image features are extracted through       
Convolutional Neural Network (CNN). CNN is used to        
extract features from the images because it takes care of the           
structures and locality in the image. A CNN consists of a           
number of convolutional and subsampling layers optionally       
followed by fully connected layers. Many pretrained models        
are available for CNN: ResNet, AlexNet, VGGNet,       
GoogleNet etc [7][8] 
 
2.2 Text features 
 
We have used four different word embeddings namely        
word2vec[11], GloVe[12], BoW and LSTM[9] (using      



 

GloVe). In the first three embeddings, for every question we          
take the average of its word embeddings and use the          
resulting vector as the question vector. Although this        
approach seems reasonable, this leads to loss of information         
related to the relative position of the words of the sentence,           
i.e. a question with all constituent words jumbled up will          
produce the same question vector. 
To address this issue LSTM based GloVe embeddings was         
used. As LSTM preserves the sequential information it gives         
a much better representation for the question vector. 
 
2.2.1 LSTM  
 
LSTM (Long Short Term Memory) units are used in RNN          
layers to model sequential information​[9]​. A basic LSTM        
unit works by using a feedback loop in which the output of            
one time step is used as an input for the next.           

 
Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
 

Apart from using the sequential information directly LSTM        
cells also have three types of gates namely (forget, input,          
output). Using the forget gate the network can learn whether          
to forget the past information or update it. This ensures that           
if needed the network can remember information in long         
sequences like the questions that are used in visual question          
answering. This system ensures that the information       
regarding the relative position of words in the question is          
taken into account when the final question vector is         
generated. 
 
 
2.3 MLP 
 
MLP (Multilayer Perceptron) is a type of vanilla feed         
forward neural network as they usually consist of only one          
hidden layer [4]. MLP consists of more than one perceptron          
and consists of input layer and output layer along with          
multiple hidden layers in between (as shown is the         
following image). Generally, MLP consists of a single        
hidden layer which is ideal for approximating any        

continuous function. MLP are extremely helpful in the        
classification problem  

Image source: https://medium.com/@ksusorokina/image-classification 
-with-convo lutional-neural-networks-496815db12a8 
 
The features extracted from 2.1 and 2.2 are concatenated         
and sent to MLP described in 2.3 to predict the correct           
answer. 
 
2.5 IMAGE QUESTION CO-ATTENTION [3] 
 
The idea is to emphasise more on certain important words in           
the question and get their relationships in the image so as to            
get the desired context in the question as well as in the            
image. 
Two co-attention strategies have been proposed by ​Lu et al​.  
Parallel Co-attention ​(attends to image and question       
simultaneously) 
Alternating Co-attention ​(sequentially alternates between     
generated image and question attention maps) 
Following is the approach used which is based on         
alternating co-attention:  

Given an image feature map V ∈ , and the question       RdxN  
    

representation Q ∈ . Initially, the similarity (the   RdxT  
     

affinity matrix C ∈ ) between each word vector, ​q​i in    RT xN  
       

the sentence with the image feature map locations, ​v​j is          
calculated by using the following formula, as defined by ​Lu          
et al. 

,​where ∈ contains theanh(Q W V )C = t T
b   W b Rdxd 

  
weights. 
After that, the image feature vectors and question vectors         
are attended by using an attention operation       (X , g)  x︿ = A  
defined by ​Lu et al. along with the guidance vector, g. (Here            
weights used for question and image feature vectors are         
shared in different layers). First, the intermediate attended        
question feature is generated by passing Q, question  s︿        



 

feature with no attention guidance, i.e. g=​0 to the attention          
operator, A. Then, is passed as an attention guidance   s︿        
vector along with the image feature map, V as input to           
generate the attended image feature, which is only the     v︿      
weighted feature map without addition as mentioned in the         
paper. Finally, attended question feature vector, without      q︿  
the addition of weighted word vectors is generated by         
passing the question feature, Q along with the guidance of          
attended image feature . This process can possibly be   v︿       
reiterated by first passing image feature map in the first step           

to get the intermediate attended image feature and      t 
︿

 
following the compliment steps as mentioned above. 

Then, after the generation of attended word vectors and         
image feature maps are generated, the weighted word        
vectors are passed to the LSTM to get the overall question           
vectors. The whole pipeline is depicted in the following         
diagram: 

 

3. OUR APPROACH 

We also use a multi-model approach in which we distribute          
questions in 3 different classes depending on the type of          
answers we expect. The intuition behind this is, when we          
are asked a question, we somehow know what kind of          
answer is expected to be given. For example : if someone           
asks us questions like “Is there a dog in this picture?” we            
somehow know that the answer is going to be either yes or            
no. Also, for questions like “How many people are there in           
this image?”, it is expected that the answer is some integer           
value.  

One simple approach to classify these questions on        
the basis of answer type is to look at the question word itself             
i.e question words like what, where, when etc should each          

be given a separate category. But this trivial method is not           
expected to achieve satisfactory results. The issue lies in the          
fact that some question words (such as what, which) can          
lead to a wide variety of answers, for example, questions          
like “what is the man doing in this picture?” expects the           
answer to be an action but if someone asks “what is the time             
in this clock?” the answer should be a value. This type of            
ambiguity in answer type based on question word        
theoretically limits the model. However, sometimes the type        
of questions that can be asked are limited by the motivation           
behind asking the question, for example, questions asked in         
Visual Question Answering are way different from the open         
ended questions like “what is the capital of India?”. Here,          
the questions that are generally floated are of the form “Is           
there a cow in this picture?” which gives either a “yes” or            
“no” as an answer. That means even if we just make two            
classes of questions one with “yes”/”no” types and the other          
with remaining answer types, we expect the overall        
accuracy to increase as the bias created in single model          
approach due to a lot of training data giving “yes” or “no”            
as an output is now removed.  
 

4. EXPERIMENT AND SETUP 
 
We have experimented with both: basic pipeline and our         
approach in this project: 
 
4.1 Basic Pipeline 
 
First we have tried to implement a basic pipeline from          
scratch. For this we have used MSCOCO dataset.[2] 
The MSCOCO dataset has 82783 images with three        
questions asked per image in the training set. It has 40504           
images with three questions per image in the test dataset.          
There are 10 human annotated answers in the test dataset.          
Because of hardware limitations, we have taken 30000 data         
points for training and 15000 data points for testing. 
We have borrowed VGG16 CNN features from stanford        
repository for image features [10] 
We have used three different methods to extract features         
from questions: Google news dataset for W2V, Stanford        
dataset for GLoVe, and wrote code for BoW. We have also           
tried LSTM using GloVe features. 
We have concatenated the image features and question        
features and passed it through MLP. We have used MLP          
with two hidden layers. Output of this MLP is 1000 x 1            
vector corresponding to the top 1000 answers. Top 1000         
answer from the training dataset was covering 87% of the          



 

total dataset. So, choosing it is not a bad assumption. Our           
MLP looks like: 

 
 
 

We have then compared each predicted answer to test          
answers and reported it correct if it matches with at least           
three out of ten of the human annotated answers. 
 
4.2 Our Approach 

On exploring our training dataset of 30000 observations we         
found that questions that had question words like        
‘Is’/’can’/’should’ etc gave answers as either ‘yes’ or ‘no’         
11338 out of 12036 times. This implied 2 things - firstly, a            
lot of questions asked on images give only “yes” or “no” as            
an output (38% in this case). Secondly, in questions that          
begin with ‘If’/can’/’should’ etc 94% of the time we had to           
choose the right answer from only two possible outcomes.         
That means if we just make a separate category of these           
questions and train it separately, we expect the accuracy of          
output to be higher. Following this observation questions        
were classified in the following three categories - 

1. Questions with question word    
‘Is’/’Are’/’Do’/’Does’/’Has’/’Have’/’Can’/’Should
’/’Could’/’Will’/’Shall’/’Would’ 

2. Questions with question word ‘How many’ 
3. Other questions 

The questions were then trained in three different neural         
nets with similar architecture but different outputs. For the         
first neural net sigmoid was used an activation function in          
the last layer to give one output between 0 and 1. In the             
second neural net, softmax was used as the activation         
function with 100 integers as probable output and in the          
third neural net, top 1500 possible answers were chosen as          
probable outputs. 

 

5. RESULT AND DISCUSSION 
 
For the basic pipeline, we have tested each model for 100           
epochs and got the following accuracy. 
 

 
 

Epoch/M
odel    w2v GloVe BoW 

LSTM 
(Glove) 

10 0.2244 0.2979 0.2497 0.2444 

20 0.2308 0.3271 0.2956 0.2575 

30 0.2326 0.3700 0.3226 0.3309 

40 0.2468 0.3729 0.3247 0.3526 

50 0.2608 0.3968 0.3301 0.3603 

60 0.2695 0.3812 0.3192 0.3686 

70 0.2651 0.3820 0.3244 0.3654 

80 0.2669 0.3756 0.3328 0.3569 

90 0.2888 0.3608 0.3288 0.3495 

100 0.2842 0.3646 0.3296 0.3365 

 

 
We were getting a good accuracy (around 40%) using a very           
less dataset and in the basic pipeline. We thought that the           
accuracy would improve further after introducing LSTM but        
it didn’t happen as depicted in the graph. We were not able            
to debug this error. 
 



 

In our approach where we are using multi model method,          
we have got an accuracy of 66.56% for Yes/No type of           
questions, 32.80% for numerical answer type questions and        
21.5% for other type of questions, for 30 epochs using          
GLoVe as feature vector for questions. These accuracies are         
not upto the mark. We thought we would get upto 80%           
accuracy for Yes/No type but it didn’t happen unfortunately.         
So, we didn’t try other variants in this approach. 
We also wrote the code for co-attention but unfortunately         
finally we weren’t able to implement it due to some          
unresolved bug and time constraint as the system changed         
during the training time of the whole LSTM+Co_attention        
pipeline. 
  

6. CONCLUSION 
 
As our modest results show, the work on VQA is still in an             
early stage. However, Deep Learning approaches have       
shown promise on this task and they are expected to remain           
the weapon of our choice. In the last two years, there has            
been some work on including question and image Co-         
attention in the VQA pipeline and it has led to modest           
improvement in the State of the Art results[1][3]. However,         
the role of question and image Co-attention needs to be          
explored further for VQA tasks as it can even further          
improve the results on VQA tasks. 
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