Query network based limited guidance for RL
agents

Akshay Sharma
Graduate Student, MSME-R

Department of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213
Email: akshaysh@andrew.cmu.edu

ABSTRACT

The last few years have seen a lot of progress in
deep reinforcement learning (DRL) which have allowed au-
tonomous agents to learn difficult tasks. Though these algo-
rithms boast of a very good performance, these require large
amounts of training samples to achieve it, and even then such
trained agents when deployed can still at times get confused
and take a lot of wrong actions. In this work we have tried to
use an expert agent to help agents trained using Reinforce-
ment Learning (RL). We work in a limited communication
setup i.e. the expert can not help the agent all the time, and
try to learn a ”Query network” which can learn when the
RL agent gets most confused and then queries the expert only
at those steps. Our experiments on a grid world navigation
task, shows an improvement in the number of steps the agent
takes to reach its goal.

1 INTRODUCTION

Humans have the ability to explore their environment
and learn tasks using trial and error. To replicate this behav-
ior in robots people have tried to use Reinforcement Learn-
ing (RL). RL algorithms allow agents to explore the environ-
ment, and find behaviors which can maximize some under-
lying reward function. The last few years have seen a lot of
new and powerful RL algorithms like DDPG [10], PPO [9],
TRPO [8], which have allowed artificial robots to learn and
preform a plethora of tasks which have been earlier used
to judge human intelligence. Even though these algorithms
boast of a very good performance, these require a tremen-
dous amounts of training samples to achieve it. Such trained
agents when deployed can still at times get confused and take
a lot of wrong actions. If one tries to compare such behaviors
with a human’s performance who has been trained in doing a
certain task, one potential workaround to this problem comes
out as the presence of a teacher or an expert which always
knows the best possible action in each state. We built up on

Dr. Katia Sycara
Advanced Agent-Robotics Lab
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Email: katia@andrew.cmu.edu

the same idea, and tried to build a ”Query network™ which
can be trained on top of the agent and learn when is the agent
getting confused, and query the expert at those states. For
this setup we consider a limited communication scenario, i.e.
the expert can not be queried all the times, and work on a
grid world based navigation task in the MiniGrid [2] based
BabayAlI [1] environment. We use PPO to train an agent in
the said environment and then train the Query network using
the agent’s observations, and its policy distribution over pos-
sible actions to learn whether it needs expert’s help or not.

2 RELATED WORK

Confusion in a RL agent can be thought of its need to

explore its environment more. Exploration helps a RL agent
in finding behaviors which can help them in getting high task
rewards. [5,7] deal with this as curiosity of the RL agent, and
have come up with agents which can explore their environ-
ment better. Working on the same idea of extracting good
behaviors. [3] try to randomize the action selection of agent
as much as possible which allows the agent to visit more di-
verse states and possibly reduce its confusion when it is de-
ployed.
People have also tried to observe and learn agent behavior,
for the task of differentiating between different agent types
in [6]. We also have tried to observe agent behavior but with
the intention of judging the agent’s inability to take a decisive
action and intervene in those scenarios by taking an expert’s
help.

3 METHOD

We divide the whole process into 2 parts: (1) Training
an agent using PPO, (2) Training a Query network on top of
this trained agent.

1 Copyright © by ASME

Aagent

) EE— Agent
Pagent
Observations aq : .
; 3 N Final action
Environment Query Network f(ag, aagent, Aexpert) ay
A
3> Oracle/ Expert
Expert's suggested action
A (expert)
Expert tracks all the
actions actually taken
\ J
Fig. 1. Overall architecture of the training procedure for Query network
3.1 Agent After we have trained the agent, we freeze its weights

We used a RL agent which is trained using Proximal
Policy Optimization (PPO) [9] algorithm. For this we used
the existing PPO training framework already implemented in
BabyAlI. This algorithm takes the partially observable view,
and the task instruction text as the input, and gives a proba-
bility distribution over the actions.

3.2 Expert

The BabyAlI [1] environment provides an expert agent
for each task. This expert agent is a heuristic based agent
and has access to the whole environment, and can run a short-
est path algorithm to find the best sequence of actions to the
goal. This expert can also work along with the RL agent
by taking in as input the history of actions taken so far, and
providing corrective actions if required.

3.3 Query network

Field of view
CNN

Instruction
—————>» GRU FC —> Pq
Concatenated Y
embedding]

Fig. 2. Query network architecture

Agent's policy Policy_FC

and deploy it in the environment, and train the Query net-
work on this setup. The Query network is a deep neural net-
work which takes in as input the same information as the
agent along with the agent’s output probability distribution
over its actions as shown in Fig 1 at each step. At each step,
the environment gives the current observations of the agent
which include agent’s current field of view, and the instruc-
tions defining the goal. These are used by the agent to give
a probability distribution P,gen over its actions, from which
an action duge,; can be selected by taking the argmax of the
probability distribution.

As shown in Fig 2 the query network it self consists of a con-
volution neural network (CNN) block which processes the
field of view of the agent, a gated recurrent unit (GRU) to
process the task instruction, one fully connected (Policy_FC)
block to process the agent’s policy distribution, and another
fully connected (FC) block which processes the concatenated
field of view, instruction, and agent policy embeddings to
output a probability value regarding whether to query the ex-
pert or not.

So it takes in the observations and P,gene and gives an out-
put probability, P, € [0,1], where 0 means that the query
network thinks that the RL agent is not confused at all, and
1 means that the RL agent is completely confused and the
expert should be queried. The final decision of the query
network is found by thresholding the probability at 0.5, i.e.

o

ifP,<0.5

ifP,>0.5 W

Copyright © by ASME

The final action g, used to actually take a step in the environ-
ment is selected by taking into account decision of the query
policy on whether to query the expert or not,

ar = f(aqa Aagent s aexpert) = (1 - aq) *Aagent T g * Aexpert 2)

The target output or the ground truth for the query network is
decided by comparing the agent’s action against the expert’s

action.
0
Qg target =
q.targ 1

3.4 Loss function

The query network is trained using a custom loss func-
tion. For this we first take the RL agent’s logit output of the
last layer i.e. the raw scores before probability computation
over the action space, and denote it by A. Then we calculate a
probability distribution only on two actions, one selected by
the expert dexpers, and the action with the highest logit value
which is not equal to the @experr, and denote it by a

if Aagent = Uexpert 3)

if Aagent # Aexpert

Aot Aq
Py=—I P — _ Cewpert 4)
a ;\«a/ + xaexpe” Qexpert ;\‘ a —|— ;\‘aexpert
Then we calculate the loss such that the network learns that
if the logit score of @’ is not very far from that of the one
selected by the expert, the agent might be confident enough

and does not need help.
L= _(1 _Pq)*(?ae,vperl) - (Pq) *(Td,) (5)

If we are using a trained RL agent, it might happen that the
number of times it is confused is low, in those cases we have
to deal with class imbalance, i.e. the number of positive
samples (where ay sqrer = 1) are less that negative samples
(where ag sarger = 0). In these cases the network can become
biased towards always giving P, = 0, as most samples do not
require assistance. To counter this we also keep a running
average of the number of positive, and negative samples.

number of positive samples
Wpos = (6)
total samples

number of negative samples
Waeg = ™
total samples

Using these weights we do an inverse weighing, i.e. multi-
ply the loss term for positive samples with wy,e, and that of
negative samples with w,,s. So our final loss function looks
like:

L= ~Wpos * (1 7Pq) * (?aexpert) — Wneg * (Pq) * (fpa/) (8)

Fig. 3. Example of a generic navigation task in BabyAl. Here the
agent is given the instruction, "Go To the Blue Ball”.

4 EXPERIMENTS

The RL agent’s neural network architecture, its training
algorithm provided in BabyAlI [1], our implementation of the
Query network and its training are all written using PyTorch

(4]

4.1 Environment

For this work we used BabyAl [1] as we wanted a grid-
world environment, which can allow us to have a not too
complex environment along with an expert which can pro-
vide us with the correct action at every state. BabyAl. As
shows in Fig 3 the environment consists of a 7X7 grid in-
cluding a boundary, which leaves a 6X6 grid for the agent to
explore. The agent is represented by a red triangle and has
a limited field of view of size 5X5 in front of it marked as
the grey shaded area in the Fig 3. We used only the naviga-
tion task in our work, which just asks the agent to reach to
a certain object in the environment. Here the agent is sup-
posed to reach the blue ball shown in the top right corner
of the Fig 3. The task is conveyed as a text according to a
predefined grammar in BabyAI [1].

4.1.1 Observations

At every step the environment provides a 5X5 view of
the area ahead of the agent in the agent facing direction. This
view clearly marks the agent, the objects, the walls, and the
empty space as integers along with the color information of
each object.

4.1.2 Action space

The agent has seven actions in its action space: For-
ward, Turn left, Turn right, Pick, Drop, Open, Done. In
our context of the navigation task in a 7X7 grid, the Open
action is not usable. The agent has to specifically call the
Done action to indicate that the task is complete.

4.1.3 Reward structure

This setup has a sparse reward structure, i.e. the agent
gets a reward of +1 only when it reaches the target object,
and 0 otherwise.

3 Copyright © by ASME

e o ©
()] ~ (o]
1 1 1

o
ol
1

Correct_query_%

0 200 400

600 800

Average_query_%

0 200 400

600 800

steps

Fig. 4. The plots show the evolution of "Correct query

5 RESULTS AND DISCUSSIONS

We ran our experiments on the navigation task in the
BabyAI’s [1] 7X7 grid environment, training the RL agent
and the query network as described in the section 3.

5.1 Evaluation Metrics
We evaluated the results using the following metrics:

1. Percentage of queries per episode: As stated earlier that
we want to emulate a limited communication setting
where the RL agent can’t ask the expert at all time steps,
so we want our query network to query the expert as less
number of times as it can. We measure this criteria by
calculating the percentage of steps on which the query
network queried the expert in every episode and average
this over all the episodes.

2. Percentage of correct queries per episode: We also want
the query network to make legitimate queries, i.e. all
the queries it makes should be actually required. We
check the legitimacy of each query by checking whether
at those queried steps, dg sarer = 1 Or not. We calculate
this over all the queried steps in an episode and then
average it over all the episodes.

3. Average return: The mean return shows the actual per-
formance of the RL agent. If the query network worked

%", and "Average query %" as the training progress.

Table 1. Comparing RL agent’s performance with and without the
query network. Here the query network was used after its training
has converged. For Average return, higher the value the better it is,
and for Average episode length a lower value is better.

Metric Without With Query
Query
Average query % - 25%
Correct query % - 84%
Average return 0.918 0.925
Average episode length 5.79 5.39

it should increase. We measure it by taking the average
of the cumulative reward of each episode over all the
episodes.

4. Average episode length: A high average episode length
indicates that the agent might be taking a lot of wrong
actions in the environment and is just roaming around.
Query network should ideally lead to a decease in this
metric.

4 Copyright © by ASME

5.2 Results

We trained the query network on top of the trained RL
agent, and evaluated the trained query network along the RL
agent during training on a test environment. As can be seen
from Fig 4, the Average query % initially rises as the query
network starts to learn, and then at the end settles down to
making queries around 25% of the time. At the same time,
the percentage of queries which are correct also increase and
settles to around 84%. These results do show promising per-
formance of the query network as we expected.
We also tested whether the query network is actually mak-
ing a difference by running the trained RL agent with and
without the query policy. As can be seen in table 1, the Aver-
age return increased from 0.918 to 0.925 when we used the
query network along with the agent, and the Average episode
length decreased from 5.79 to 5.39.

6 FUTURE WORK

In this work, we have tested the query network setup
only on a simple navigation task, but the BabyAl [1] pro-
vides a lot of other complex takes like picking and placing
objects, multiple room environments, etc which should be
further tested out. Another good direction will be to apply
this method in environments other than gridworld which will
have their own unique challenges.

Acknowledgements

This work has been partially supported by ARL award
WOI1INF-1920146. I would specially like to thank my
advisor Dr. Katia Sycara, and my lab-mates Swaminathan
Gurumurthy, Siddharth Ghiya, Abhijeet Ghawade, Keitaro
Nishimura, Rohit Jena, and Vidhi Jain for helping and col-
laborating with me on this and different other projects.

References

[1] Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAl: First
Steps Towards Grounded Language Learning With a
Human In the Loop. 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and
Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-
minigrid, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An impera-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

tive style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 8024—
8035. Curran Associates, Inc., 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and
Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 16-17, 2017.

Neil C. Rabinowitz, Frank Perbet, H. Francis Song,
Chiyuan Zhang, S. M. Ali Eslami, and Matthew
Botvinick. Machine theory of mind. CoRR,
abs/1802.07740, 2018.

Nikolay Savinov, Anton Raichuk, Raphaél Marinier,
Damien Vincent, Marc Pollefeys, Timothy Lillicrap,
and Sylvain Gelly. Episodic curiosity through reach-
ability. arXiv preprint arXiv:1810.02274, 2018.

John Schulman, Sergey Levine, Philipp Moritz,
Michael Jordan, and Pieter Abbeel. Trust region policy
optimization. 32nd International Conference on Ma-
chine Learning, ICML 2015, 3:1889-1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal Policy Optimiza-
tion Algorithms. pages 1-12, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas De-
gris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. 31st International
Conference on Machine Learning, ICML 2014, 1:605—
619, 2014.

Copyright © by ASME

